
Review of Python Pandas
Based on CBSE Curriculum

Informatics Practices Class-12

By:
Neha Tyagi, PGT CS
KV no-5 2nd Shift, Jaipur
Jaipur Region

CHAPTER-1

Python Pandas (A Review)
• Data Processing is the most important part of Data

Analysis. Because data is not avaiable every time in

desired format.

• Before analyzing the data it needs various types of

processing like - Cleaning, Restructuring or merging

etc.

• There are many tools available in python to process

the data fast Like-Numpy, Scipy, Cython and Pandas.

• Pandas are built on the top of Numpy.

• In this chapter we will learn about the basic concepts

of Python Pandas Data Series and DataFrames

which we learnt in class -11.

संजीव भदौरिया, के० वव० बािाबंकी

Python Pandas
• Pandas is an open-source library of python providing high-performance

data manipulation and analysis tool using its powerful data structure.

• Pandas provides rich set of functions to process various types of data.

• During data analysis it is very important to make it confirm that you are

using correct data types otherwise you may face some unexpected

errors.

• Some of the pandas supporting data types are as follows -

संजीव भदौरिया, के० वव० बािाबंकी

Pandas Series
• Series is the primary building block of Pandas.

• Series is a labeled One-Dimensional Array which can hold any type of

data.

• Data of Series is always mutable. It means, it can be changed.

• But the size of data of Series is size immutable, means can not be

changed.

• it can be seen as a data structure with two arrays: one functioning as the

index (Labels) and the other one contains the actual data.

• In Series, row labels are also called the index .

• Lets take some data which can be considered as series -

संजीव भदौरिया, के० वव० बािाबंकी

Creation of Series Objects

Neha Tyagi, KV5 Jaipur II shift

– There are many ways to create series type object.

1. Using Series ()-

<Series Object> = pandas.Series() it will create empty series.

2. Non-empty series creation–

Import pandas as pd

<Series Object> = pd.Series(data, index=idx) where data can be
python sequence, ndarray, python dictionary or scaler value.

Index
Index

Series Objects creation

Neha Tyagi, KV5 Jaipur II shift

1. Creation of series with Dictionary-

2. Creation of series with Scalar value-

Index of
Keys

Creation of Series Objects –Additional functionality

Neha Tyagi, KV5 Jaipur II shift

1. When it is needed to create a series with missing values, this

can be achieved by filling missing data with a NaN (“Not a

Number”) value.

2. Index can also be given as-

Loop is used to give Index

Creation of Series Objects –Additional functionality

Neha Tyagi, KV5 Jaipur II shift

3. Dtype can also be passed with Data and index

4. Mathematical function/Expression can also be used-

Important: it is not necessary to

have unique indices but it will give
error when search will be according to
index.

Series Object Attributes

Neha Tyagi, KV5 Jaipur II shift

3. Some common attributes-

 <series object>.<AttributeName>

Attribute Description
Series.index Returns index of the series

Series.values Returns ndarray

Series.dtype Returns dtype object of the underlying data

Series.shape Returns tuple of the shape of underlying data

Series.nbytes Return number of bytes of underlying data

Series.ndim Returns the number of dimention

Series.size Returns number of elements

Series.intemsize Returns the size of the dtype

Series.hasnans Returns true if there are any NaN

Series.empty Returns true if series object is empty

Series Object Attributes

Neha Tyagi, KV5 Jaipur II shift

Accessing Series Object

Neha Tyagi, KV5 Jaipur II shift

Printing Individual value

Printing object value

Object
slicing

For Object slicing, follow the following syntax-

<objectName>[<start>:<stop>:<step >]

Operations on Series Object

Neha Tyagi, KV5 Jaipur II shift

1. Elements modification-

<series object>[index] = <new_data_value>

To change
individual value To change value in a

certain slice

Operations on Series Object

Neha Tyagi, KV5 Jaipur II shift

1. It is possible to change indexes

<series object>.<index] = <new_index_array>

Here, indexes got
changed.

head() and tail () Function

Neha Tyagi, KV5 Jaipur II shift

1. head(<n>) function fetch first n rows from a pandas object. If

you do not provide any value for n, will return first 5 rows.

2. tail(<n>) function fetch last n rows from a pandas object. If

you do not provide any value for n, will return last 5 rows.

Series Objects -

Vector Operations

All these are
vector operations

Series Objects -

Arithmetic Operations

Arithmetic operation is
possible on objects of
same index otherwise
will result as NaN.

We can also store these results in other objects. Neha Tyagi, KV5 Jaipur II shift

Entries Filtering

Neha Tyagi, KV5 Jaipur II shift

 <seriesObject> <series - boolean expression >

Other feature

To delete value of
index

Difference between NumPy array Series objects

Neha Tyagi, KV5 Jaipur II shift

1. In case of ndarray, vector operation is possible only

when ndarray are of similar shape. Whereas in case

of series object, it will be aligned only with matching

index otherwise NaN will be returned.

2. In ndarray, index always starts from 0 and always

numeric. Whereas, in series, index can be of any

type including number and not necessary to start

from 0.

DataFrame
• Pandas का मुख्य object DataFrame होता ह ै| और यह pandas का सबस ेअधिक प्रयोग

ककया जाने वाला Data Structure ह ै|

• DataFrame एक Two -Dimensional Array होता ह ैजो ककसी भी data type को hold

कर सकती ह ै| और यह tabular format में data को store करता ह ै|

• Finance, Statistics, Social Science और कई engineering branch में इसका प्रयोग

अधिकता में ककया जाता ह ै|

• DataFrame में data और इसका size दोनों ही mutable होते हैं अर्ाात इन्हें बदला जा

सकता ह ै|

• DataFrame में दो धवधभन्न indexes होत ेहैं - row index और column index |

संजीव भदौरिया, के० वव० बािाबंकी

Creation and presentation of DataFrame

Neha Tyagi, KV5 Jaipur, II Shift

• DataFrame object can be created by passing a data in 2D

format.

 import pandas as pd
 <dataFrameObject> = pd.DataFrame(<a 2D Data Structure>,\ [columns=<column

sequence>],[index=<index sequence>])

• You can create a DataFrame by various methods by passing

data values. Like-

• 2D dictionaries

• 2D ndarrays

• Series type object

• Another DataFrame object

Creation of DataFrame from 2D Dictionary

Neha Tyagi, KV5 Jaipur, II Shift

In the above example, index

are automatically generated

from 0 to 5 and column name

are same as keys in dictionary.

column name are generated from

keys of 2D Dictionary

Indexes are

automatically

generated by using

np.range(n)

A. Creation of DataFrame from dictionary of List or ndarrays.

Neha Tyagi, KV5 Jaipur, II Shift

Here, indexes are

specified by you.

Meaning, if you specify the sequence of index then index

wlil be the set specified by you only otherwise it will be

automatically generated from 0 to n-1.

Creation of DataFrame from 2D Dictionary

Neha Tyagi, KV5 Jaipur, II Shift

It is a 2D Dictionary made up of

above given dictionaries.

DataFrame object created.

B. Creation of DataFrame from dictionary of Dictionaries-

Here, you can get an idea

of how index and column

name have assigned.

If keys of yr2015, yr2016 and yr2017 were

different here then rows and columns of

dataframe would have increased and non-

matching rows and column would store

NaN.

Creation of Dataframe from 2D ndarray

Neha Tyagi, KV5 Jaipur, II Shift

column name and index have

automatically been generated here.

Here, user has given column

name .

Here, column name and index

both have given by user.

Creation of DataFarme from 2D Dictionary of same Series Object

Neha Tyagi, KV5 Jaipur, II Shift

It is a 2D Dictionary made up of series

given above.

DataFrame object created.

DataFrame object can also be

created like this.

Creation of DataFrame from object of other DataFrame

Neha Tyagi, KV5 Jaipur, II Shift

DataFrame object is created from

object of other DataFrame.

Displaying DataFrame Object
Syntax for displaying

DataFrame object.

DataFrame Attributes

Neha Tyagi, KV5 Jaipur, II Shift

• When we create an object of a DataFrame then all information

related to it like size, datatype etc can be accessed by attributes.

 <DataFrame Object>.<attribute name>

• Some attributes are -

Attribute Description

index It shows index of dataframe.

columns It shows column labels of DataFrame.
axes It return both the axes i.e. index and column.

dtypes It returns data type of data contained by dataframe.

size It returns number of elements in an object.
shape It returns tuple of dimension of dataframe.
values It return numpy form of dataframe.
empty It is an indicator to check whether dataframe is empty or not.
ndim Return an int representing the number of axes / array dimensions.
T It Transpose index and columns.

DataFrame Attributes

Neha Tyagi, KV5 Jaipur, II Shift

Selecting and Accessing from DataFrame

Neha Tyagi, KV5 Jaipur, II Shift

• Selecting a Column-

 <DataFrame Object>[<column name>]

or <DataFrame Object>.<column name>

<DataFrame Object>[List of column name]

To select a
column

Selection of multiple column

We can change the order in column.

Selection of subset from DataFrame

Neha Tyagi, KV5 Jaipur, II Shift

<DataFrameObject>.loc [<StartRow> : <EndRow>, <StartCol> : <EndCol>]

Selection of subset from DataFrame

Neha Tyagi, KV5 Jaipur, II Shift

<DataFrameObject> .iloc [<Row Index> : <RowIndex>, <ColIndex> : <ColIndex>]

Selection of an Individual Value from DataFrame
<DFObject>. <col name.[row name or row index]

or

<DFObject> . at [<row name>,<col name>]

or

<DFObject> iat[<row index>, <col index>]

Accessing and modifying values in DataFrame

Neha Tyagi, KV5 Jaipur, II Shift

a) Syntax to add or change a column-

 <DFObject>.<Col Name>[<row label>]=<new value>

A new column will be created because there is
no column with the name ‘Four’.

The values of column will get change because
there is a column with the name ‘Four’.

Accessing and modifying values in DataFrame

Neha Tyagi, KV5 Jaipur, II Shift

b) Syntax to add or change a row-

 <DFObject> at[<RowName>, :] =<new value>

या

 <DFObject> loc[<RowName>, :] =<new value>

A new row will be created because there is no
row with the name ‘D’.

The values of row will get change because
there is a row with the name ‘D’.

Accessing and modifying values in DataFrame

Neha Tyagi, KV5 Jaipur, II Shift

c) Syntax to change single value-

 <DFObject>.<ColName>[<RowName/Lebel>]

Here, value of column ‘Three’ of row ‘D’ got
changed.

Values can be changed like this also. Values of
row and column can be given separately.

Accessing and modifying values in DataFrame

Neha Tyagi, KV5 Jaipur, II Shift

d) Syntax for Column deletion-

 del <DFObject>[<ColName>] or

 df.drop([<Col1Name>,<Col2Name>, . .], axis=1)

axis =1 specifies deletion of column.

del command does not return
value after deletion whereas
drop method returns the
value to dataframe after
deletion.

Iteration in DataFrame

Neha Tyagi, KV5 Jaipur, II Shift

• Sometimes we need to perform iteration on complete

DataFrame. In such cases, it is difficult to write code

to access values separately. Therefore, it is

necessary to perform iteration on dataframe which is

to be done as-

• <DFObject>.iterrows() it represents dataframe in

row-wise subsets .

• <DFObject>.iteritems() it represents dataframe in

column-wise subsets.

Use of pandas.iterrows () function

Neha Tyagi, KV5 Jaipur, II Shift

These are the values
of df1 which are
processed one by
one.

Try the code given below
after creation of DataFrame.

Use of pandas.iteritems() function

Neha Tyagi, KV5 Jaipur, II Shift

These are the
values of df1
which are
processed one by
one.

Try the code given below
after creation of DataFrame.

Program for iteration

Neha Tyagi, KV5 Jaipur, II Shift

• Write a program to iterate over a dataframe

containing names and marks, then calculates grades

as per marks (as per guideline below) and adds them

to the grade column.

 Marks > =90 Grade A+

 Marks 70 – 90 Grade A

 Marks 60 – 70 Grade B

 Marks 50 – 60 Grade C

 Marks 40 – 50 Grade D

 Marks < 40 Grade F

Program for iteration

Neha Tyagi, KV5 Jaipur, II Shift

Binary Operations in a DataFrame

Neha Tyagi, KV5 Jaipur, II Shift

It is possible to perform add, subtract, multiply and devision

operations on DataFrame.

To Add - (+, add or radd)

To Subtract - (-, sub or rsub)

To Multiply– (* or mul)

To Divide - (/ or div)

We will perform operations on following dataframes-

Addition

Neha Tyagi, KV5 Jaipur, II Shift

DataFrame follows index matching to perform arithmetic operations. If matches, operation

takes place otherwise it shows NaN (Not a Number). It is called Data Alignment in panda

object.

This behavior of ‘data alignment’ on the basis of “matching indexes” is called MATCHING.

Subtraction

Neha Tyagi, KV5 Jaipur, II Shift

Multiplication

Neha Tyagi, KV5 Jaipur, II Shift

Division

Neha Tyagi, KV5 Jaipur, II Shift

See the
operation of the
rdiv carefully

Other important functions

Neha Tyagi, KV5 Jaipur, II Shift

Other important functions of DataFrame are as under-

<DF>.info ()

<DF>.describe ()

Other important functions

Neha Tyagi, KV5 Jaipur, II Shift

Other important functions of DataFrame are as under-

<DF>.head ([n=<n>]) here, default value of n is 5.

<DF>.tail ([n=<n>])

Cumulative Calculations Functions

Neha Tyagi, KV5 Jaipur, II Shift

In DataFrame, for cumulative sum, function is as under-

<DF>.cumsum([axis = None]) here, axis argument is optional. |

Index of Maximum and Minimum Values

Neha Tyagi, KV5 Jaipur, II Shift

<DF>.idxmax ()

<DF>.idxmin ()

Handling of Missing Data

Neha Tyagi, KV5 Jaipur, II Shift

• The values with no computational significance are called

missing values.

• Handling methods for missing values-

 Dropping missing data

 Filling missing data (Imputation)

Comparison of Pandas Objects

Neha Tyagi, KV5 Jaipur, II Shift

equals () checks both the
objects for equality.

• कृपया हमारे ब्लॉग को फॉलो कररए और youtube channel

को subscribe कररए | ताकक आपको और सारे chapters

धमल सकें |

www.pythontrends.wordpress.com

http://www.pythontrends.wordpress.com/

